К категории строительных материалов относят те, которые используются для возведения, реконструкции и ремонта промышленных, жилых зданий, а также инженерных сооружений. В эту группу входят как природные материалы (такие как песок, глина, камень, древесина), так и искусственные (включая бетон, цемент, стекло, кирпич, композитные строительные материалы). Кроме того, сюда относятся конструкционные материалы, изоляционные (для гидро- и теплоизоляции), а также отделочные материалы.
Свойство представляет собой качественную характеристику вещества, материала или изделия, которая определяет его уникальные особенности. Комплекс этих свойств формирует функциональные возможности стройматериала и обосновывает области его целесообразного использования. Тщательная оценка качественных показателей материалов необходима для обеспечения их корректного применения, а также создания экономичных, надежных и долговечных конструкций.
Свойства строительных материалов традиционно подразделяются на четыре крупные группы: физические, механические, химические и технологические. Каждая группа включает в себя множество специфических характеристик, определяющих поведение материала в различных условиях эксплуатации.
Параметры состояния и структурные характеристики материалов
Удельная поверхность
Плотность
Пористость
Удельный вес
Физические свойства |
|
---|---|
Механические свойства строительных материалов |
|
Химические свойства строительных материалов | |
Технологические свойства строительных материалов |
Рассмотрим подробнее каждую из этих категорий.
Физические свойства определяют отношение материала к различным физическим процессам и воздействиям. К основным физическим свойствам материала можно отнести:
Механические свойства характеризуют способность материала сопротивляться разрушающему или деформирующему воздействию внешних сил. К этому виду свойств можно отнести:
Химические свойства характеризуют склонность материала к взаимодействию с различными веществами и способность противостоять их вредному воздействию (коррозионная или химическая стойкость).
Технологические свойства определяют способность материала подвергаться различным видам обработки, изменяющих состояние материала, придающих нужную форму и размеры. К ним относятся:
К эксплуатационным (оценивающим пригодность материала для работы в специальных условиях) можно отнести такие свойства, как – жаростойкость, жаропрочность, износостойкость.
Для возведения строительных объектов различного назначения требуется огромное количество материалов и изделий разной номенклатуры. В общей сложности сумма может достигать нескольких сотен единиц. Затраты на их приобретение могут составлять 50-70% сметы.
Надежность и безопасность будущего сооружения определяет выбор качественных строительных материалов, использование необходимых технологий их применения. Именно поэтому необходимо своевременно проводить объективную оценка качества материалов у специалистов.
Изучение характеристик строительных материалов также может потребоваться при:
Механические испытания по характеру действующей на испытуемый объект во время испытания нагрузки, делятся на три вида: статические, динамические, усталостные.
Статическими называют испытания, при которых испытуемый образец подвергают постоянной или медленно возрастающей нагрузке. Наиболее важны следующие виды статических испытаний:
По результатам определяют прочностные, упругие и пластические свойства материалов.
Динамическими называют испытания, при которых материал подвергают воздействию ударным нагрузкам (резкое изменение величины нагрузок и большой скоростью деформации). По результатам динамических испытаний определяют величину работы, затраченной на деформацию или разрушение образца
Усталостные испытания могут длится сотни часов и проводятся при многократном циклическом приложении, нагрузки к образцу. В конечном итоге определяется предел выносливости материала (предельные напряжения, которые образец выдерживает без разрушения). Испытания на усталость проводятся на растяжение, кручение, изгиб, сжатие — со всеми материалами.
Механические испытания проводятся в процессе проведения разрушающего контроля (исследование образцов, во ходе которого происходит его разрушение).
Испытания на растяжение проводятся на испытательных машинах и являются одними из наиболее распространенных методов механического контроля. Измеряя образец во время его растяжения, получают полные характеристики его свойств на растяжение. При нанесении этих данных на график кривой напряжение/деформация – отслеживают реакцию материала на силу напряжение в каждой точке. Самой важной будет являться точка разрушения образца, но не менее ценными станут и точки предела пропорциональности, предела текучести, предшествующие пределу прочности (разрушения). Во время испытания на растяжение определяются:
Неразрушающие методы контроля позволяют без ущерба для конструкции исследовать ее техническое состояние. К неразрушающим методам относится ВИК (визуальный и измерительный контроль), радиационный, ультразвуковая дефектоскопия, магнитнопорошковый и вихретоковый метод, контроль на непроницаемость (капиллярный) и ряд других методов. Работа приборов неразрушающего контроля основывается на принципах изменения свойств предмета при наличии дефектов.
Ультразвуковой контроль (УЗК) основан на способности ультразвуковых колебаний отражаться от поверхности, разделяющей среды с разными акустическими свойствами. Это метод неразрушающей проверки, в основе которого лежит поиск механических дефектов недопустимого размера и химических отклонений от заданного параметра.
Магнитографический метод контроля основан на обнаружении магнитных полей рассеяния, возникающих в местах дефектов соединений при намагничивании контролируемых деталей, с последующим воспроизведением и расшифровкой полученной записи. Этот метод применяют для контроля сварных швов трубопроводов, конструкций с длинными швами из сталей.
Капиллярный метод контроля (люминесцентная и цветная дефектоскопия) используется для определения дефектов в сварочных швах металлов (черных и цветных), пластмасс, стекла, керамики. Проникая в тело металла, индикаторные жидкости оставляют следы, по которым и определяются дефекты. Следы обнаруживаются визуально, либо при помощи специальных приборов-преобразователей.
Поскольку при неразрушающем контроле прочность бетона рассчитывается косвенным образом (исходя из величины усилия) перед проведением испытаний необходимо установить градуировочные зависимости (ГЗ).
Отрыв со скалыванием – самый распространенный метод оценки прочности бетонных конструкций. В бетоне просверливаются отверстия, в нем закрепляется анкер, который отрывается специальным прибором с замером усилия вырыва. При скалывании ребра, прибор закрепляется в зоне ребра конструкции.
Упругий отскок – косвенный метод оценки прочности бетона. Замеры осуществляются специальным прибором (склерометром), состоящим из ударного механизма и стрелки-индикатора, данные соотносятся с графиком ГЗ.
Ударный импульс –также относится к косвенным методам анализа. В момент испытания проводится серия ударов в одну точку конструкции. Прибором фиксируется энергия удара, возникающая при взаимодействии ударного бойка (молотка Шмидта) и поверхности. С помощью предварительно установленных градуировочных зависимостей, определяется прочность или класс бетона.
Ультразвуковой метод – измерение скорости колебаний ультразвука, проходящего сквозь толщу бетона. Применяется, чтобы определить прочность бетона в промежуточном и проектном возрасте. Прочностные характеристики определяют по ГЗ.
Наш менеджер свяжется с вами для уточнения технического задания и составит для вас индивидуальное коммерческое предложение.